第一个式子到第二个应该很简单
现在证[1+1/(k+1)]k+1>2
原式=k+k/(k+1)+1=(k^2+3k+1)/(k+1)=(k^2-2k+1)/(k+1)+[5k/(k+1)]
=(k-1)^2/k+1+5-[5/(k+1)]
当K=1时上式最小=5/2>2
现在证[1+1/(k+1)]k+1>2
原式=k+k/(k+1)+1=(k^2+3k+1)/(k+1)=(k^2-2k+1)/(k+1)+[5k/(k+1)]
=(k-1)^2/k+1+5-[5/(k+1)]
当K=1时上式最小=5/2>2