若相邻素数对应的最小偶数间断点相等:N_(m+1)d = N_md,则
N_md = c_x + p_m..............................(1)
N_(m+1)d = c_x' + p_(m+1)................(2)
N_(m+2)d = c_x" + p_(m+2)...............(3)
(2)-(1)得到:
p_(m+1) - p_m = c_x - c_x‘ = 2y
.
根据 c_x & c_x‘ 都是最小素因子大于2的奇合数,不妨设c_x=pX, c_x‘=p'X',
N_(m+1)d = N_md,则存在素数 q<p_m, q'<p_m 满足:
p_(m+1) - p_m = c_x - c_x‘ = qX - q'X'
1) c_x - c_x‘ = 2^n ↔ qX - q'X' = 2^n → q=q’ 时不定方程无解。
2) c_x - c_x‘ = 2^n ↔ qX - q'X' = 2^n → q≠q’ 时不定方程的解:
X=Xo+q'K,X'=Xo'+qK,(q,q',K)=1;
.
取 q=3,q‘=5,
p_(m+1) - p_m = 5X' - 3X = 2^n = 2;
X'=Xo'+06m=1,(07),13,(19),...
X=Xo +10m=1,(11),21,(31),...
c_x = 5X = 35, 95
c_x' = 3X' = 33, 93
根据
N_md = c_x + p_m
N_(m+1)d = N_md
应有素数 Q < p_m,Q' < p_m 满足:
N_md - 2i = (c_x + p_m) - 2i = (35 + p_m) - 2i = Q+Q' ;i > 0;
.
满足 p_m > c_x = 35 间隔为2的孪生素数是 p_m=41,p_m+1=43
N_md - 2i = c_x + p_m -2i = 35 + 41 - 2i = 76 - 2i
N_md - 2 = 76 - 2 = 74 = 37 +37
N_md - 4 = 76 - 4 = 72 = 31 +41
N_md - 6 = 76 - 6 = 70 = 29 +41
实验验证可知:
间隔为2的孪生素数 41&43 对应的最小偶数间断点相同:N_md = 76